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Abstract

The two-dimensional wave propagation and localization in disordered periodic layered 2-2 piezoelectric composite
structures are studied by considering the mechanic-electric coupling. The transfer matrix between two consecutive sub-
layers is obtained based on the continuity conditions. Regarding the variables of mechanical and electrical fields as the
elements of the state vector, the expression of the localization factors in disordered periodic layered piezoelectric com-
posite structures is derived. Numerical results are presented for two cases—disorder of the thickness of the polymers
and disorder of the piezoelectric and elastic constants of the piezoelectric ceramics. The results show that due to the
piezoelectric effects, the characteristics of the wave localization in disordered periodic layered piezoelectric composite
structures are different from those in disordered periodic layered purely elastic ones. The wave localization is strength-
ened due to the piezoelectricity. And the larger the piezoelectric constant is, the larger the wave localization factors are.
It is found that slight disorder in the piezoelectric or elastic constants of the piezoelectric ceramics can lead to more
prominent localization phenomenon.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Intelligent materials and structures possess the abilities of self-adaptive and active control. They can per-
ceive the changes of outer environment and properly respond to these changes. Therefore, they are exten-
sively used in many engineering applications (Hyland and Davis, 2002). Among various intelligent
materials, piezoelectric composite materials are more and more widely applied, especially, in aeronautic
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and astronautic engineering. Piezoelectric composites are made up of polymers and piezoelectric ceramics.
They not only possess the merits of both polymers and piezoelectric ceramics but also greatly enhance the
piezoelectric performances of the materials. So, piezoelectric composite materials are expected to be a main
role in the development of future intelligent materials and structures.

Many piezoelectric composites and structures, which are extensively employed in intelligent materials
and structures, have periodicity (cf. Castillero et al., 1998; Zinchuk and Podlipenets, 2001; Qian et al.,
2004). Being different from non-periodic engineering structures, periodic ones have many special dynamic
characteristics such as frequency passbands and stopbands (Baz, 2001). Furthermore, disordered periodic
structures may also exhibit wave and vibration localization (Thorp et al., 2001; Li et al., 2002, 2004). Local-
ization leads to a spatial decay of the wave amplitudes, and the associated exponential decay constant is
known as the localization factor which characterizes the average exponential rates of decay of the wave
amplitudes in disordered periodic structures. During the past decades, the special dynamic characteristics
of periodic and disordered periodic structures have received considerable attention (Castanier and Pierre,
1995; Xie and Ibrahim, 2000; Zingales and Elishakoff, 2000).

However, most previous studies on the problem of wave or vibration localization were devoted to the
case of purely elastic periodic structures. Few people have studied the periodic or disordered periodic pie-
zoelectric structures which, we believe, are of practical importance in engineering. Baz (2001) and Thorp
et al. (2001) investigated the problems of active vibration control and wave localization in the periodic
spring–mass systems controlled by the piezoelectric actuators and rods with the periodic shunted piezoelec-
tric patches and drew some significant conclusions.

In the present paper, the two-dimensional wave propagation and localization are studied in disordered
periodic layered piezoelectric composite structures. The mechanic-electric coupling of piezoelectric materi-
als are considered. Regarding the variables of the mechanical and electrical fields as the elements of the
state vector, the formulation for calculating the localization factor in the disordered layered periodic struc-
tures is presented. Numerical results of the localization factors are presented for disorder in both the thick-
ness of the polymers and the piezoelectric or elastic constants of the piezoelectric ceramics.

The paper is organized as follows. In Section 2, the equations of wave motion in piezoelectric composites
are given. In Section 3, the transfer matrix between two consecutive unit cells is derived. The wave locali-
zation in the disordered system is studied in Section 4. Numerical results are presented in Section 5. The
conclusions from this study are listed in Section 6.
2. Equations of wave motion

As shown in Fig. 1, a periodic layered 2-2 piezoelectric composite structure consists of the polymeric and
piezoelectric ceramic thin films alternately. The thickness of the polymers and the piezoelectric ceramics are
a1 and a2, respectively. The local coordinates of the polymeric film and those of the piezoelectric film are
also displayed in the figure. Consider a steady anti-plane shear wave polarized in the z-direction propagat-
ing in the positive x-direction. Then the governing equations of SH-waves in the polymers and piezoelectric
ceramics are written as (Qian et al., 2004)
cð1Þ44 r2w1ðx1; y1; tÞ � q1

o2w1ðx1; y1; tÞ
ot2

¼ 0; ð1aÞ

eð1Þ11 r2u1ðx1; y1; tÞ ¼ 0; ð1bÞ

cð2Þ44 r2w2ðx2; y2; tÞ þ eð2Þ15 r2u2ðx2; y2; tÞ � q2

o2w2ðx2; y2; tÞ
ot2

¼ 0; ð2aÞ



Fig. 1. Schematic diagram of a periodic layered 2-2 piezoelectric composite structure.
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eð2Þ15 r2w2ðx2; y2; tÞ � eð2Þ11 r2u2ðx2; y2; tÞ ¼ 0; ð2bÞ
where wj(xj,yj, t) are the displacement components in z-direction, uj(xj,yj, t) the electrical potential func-
tions, qj the mass densities, cðjÞ44 the elastic constants, and eðjÞ11 the dielectric constants, with j = 1 referring
to the polymers and j = 2 the piezoelectric ceramics; eð2Þ15 is the piezoelectric constant of the piezoelectric
ceramics; $2 is the Laplacian operator that is given by r2 ¼ o2=ox21 þ o2=oy21 in the polymers or
r2 ¼ o2=ox22 þ o2=oy22 in the piezoelectric ceramics, respectively; and t is the time.

For an incident SH-wave polarized in the z-direction propagating in h0-direction as shown in Fig. 1, the
harmonic solutions of displacement and electrical potential functions of Eqs. (1) and (2) can be written in
the following forms:
wjðxj; yj; tÞ ¼ W jðxjÞ exp½ikyj sin h0 � ixt�; ð3Þ

ujðxj; yj; tÞ ¼ UjðxjÞ exp½ikyj sin h0 � ixt�; ð4Þ
where j = 1,2; i ¼
ffiffiffiffiffiffiffi
�1

p
; k = x/c is the wavenumber of the incident SH-wave; and x and c are the circular

frequency and phase velocity, respectively; Wj and Uj are the amplitudes of the displacements and electrical
potentials, respectively; and h0 is the incident angle.

Substituting Eqs. (3) and (4) into Eqs. (1) and (2) yields
d2W 1

dx21
� k2ðsin2h0 � k21=k

2ÞW 1 ¼ 0; ð5aÞ

d2U1

dx21
� k2sin2h0U1 ¼ 0; ð5bÞ

d2W 2

dx22
� k2ðsin2h0 � k22=k

2ÞW 2 ¼ 0; ð6aÞ

d2U2

dx22
� k2sin2h0U2 ¼ p

d2W 2

dx22
� k2sin2h0W 2

� �
; ð6bÞ
where p ¼ eð2Þ15 =e
ð2Þ
11 is the ratio of the piezoelectric constant to the dielectric constant of the piezoelectric

ceramics; and k1 and k2 are, respectively, the wave numbers in the polymers and the piezoelectric ceramics
with the forms



6460 F.-M. Li, Y.-S. Wang / International Journal of Solids and Structures 42 (2005) 6457–6474
k1 ¼ x=c1; k2 ¼ x=c2; ð7Þ

where c1 and c2 are the phase velocities of the bulk shear waves in the polymers and piezoelectric ceramics,
respectively, and are given by
c1 ¼

ffiffiffiffiffiffiffi
cð1Þ44

q1

s
; c2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cð2Þ44 e

ð2Þ
11 þ ðeð2Þ15 Þ

2
h i

q2e
ð2Þ
11

vuut
: ð8Þ
In the following developments, it will be convenient to cast Eqs. (3)–(6) into dimensionless forms by intro-
ducing the following dimensionless local coordinates:
nj ¼
xj
�a1

; gj ¼
yj
�a1

ðj ¼ 1; 2Þ; ð9Þ
where �a1 is the mean value of the thickness of the piezoelectric ceramics. Substituting the first term of
Eq. (9) into Eqs. (3)–(6) leads to the following non-dimensional equations:
wjðnj; gj; tÞ ¼ W jðnjÞ exp½iagj sin h0 � ixt� ðj ¼ 1; 2Þ; ð10Þ

ujðnj; gj; tÞ ¼ UjðnjÞ exp½iagj sin h0 � ixt� ðj ¼ 1; 2Þ; ð11Þ

d2W 1

dn21
� a2ðsin2h0 � a21=a

2ÞW 1 ¼ 0; ð12aÞ

d2U1

dn21
� a2sin2h0U1 ¼ 0 ð0 6 n1 6 f1Þ; ð12bÞ

d2W 2

dn22
� a2ðsin2h0 � a22=a

2ÞW 2 ¼ 0; ð13aÞ

d2U2

dn22
� a2sin2h0U2 ¼ p

d2W 2

dn22
� a2sin2h0W 2

 !
ð0 6 n2 6 f2Þ; ð13bÞ
where a ¼ k�a1 and aj ¼ kj�a1 are the dimensionless wavenumbers and fj ¼ aj=�a1 are the dimensionless thick-
ness of the polymers and the piezoelectric ceramics.

The general solutions of Eqs. (12) and (13) are written as
W 1ðn1Þ ¼ A1 exp½�iaq1n1� þ B1 exp½iaq1n1�; ð14aÞ

U1ðn1Þ ¼ C1 exp½�a sin h0n1� þ D1 exp½a sin h0n1�; ð14bÞ

W 2ðn2Þ ¼ A2 exp½�iaq2n2� þ B2 exp½iaq2n2�; ð15aÞ

U2ðn2Þ ¼ C2 exp½�a sin h0n2� þ D2 exp½a sin h0n2� þ pfA2 exp½�iaq2n2� þ B2 exp½iaq2n2�g; ð15bÞ
where qj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2=c2j � sin2h0

q
ðj ¼ 1; 2Þ; Aj, Bj, Cj and Dj (j = 1,2) are the unknown coefficients to be deter-

mined by the boundary conditions.

Substituting Eqs. (14) and (15) into Eqs. (10) and (11), we can see that the electrical potential function u1

in the polymers is exponentially attenuated along the thickness direction of the polymers. Other three terms,
i.e. w1,w2 and u2, decay exponentially along the thickness direction of the piezoelectric ceramics layers in
the case of c=cj < sin h0. This case corresponds to the total reflection of elastic waves. So in this case the
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wave localization factors must be larger than zero and the corresponding frequency regions of elastic waves
are stopbands. When c=cj P sin h0, the terms of w1, w2 and u2 stand for the homogeneous plane waves that
can propagate through the periodic layered composite structures without attenuation. The passbands and
stopbands will appear in the corresponding frequency regions of the elastic waves.

For SH waves polarized in the z-direction, shear stresses and electrical displacements in the polymers
and the piezoelectric ceramics can be respectively expressed as
sxz1 ¼ cð1Þ44

ow1

ox1
; Dx1 ¼ �eð1Þ11

ou1

ox1
; ð16Þ

sxz2 ¼ cð2Þ44

ow2

ox2
þ eð2Þ15

ou2

ox2
; Dx2 ¼ eð2Þ15

ow2

ox2
� eð2Þ11

ou2

ox2
: ð17Þ
3. Transfer matrix

Suppose that the periodic piezoelectric composite structure as shown in Fig. 1 consists of n + 1 unit cells.
Each unit cell includes two sub-cells (sub-cell 1 and sub-cell 2), namely, the polymeric and piezoelectric thin
films. The boundary conditions at the left and right sides of the two sub-cells in the ith unit cell are written
as
wðiÞ
1L ¼ wðiÞ

1 ð0; g1; tÞ; wðiÞ
1R ¼ wðiÞ

1 ðf1; g1; tÞ;

sðiÞxz1L ¼ cð1Þ44

owðiÞ
1

on1
ð0; g1; tÞ; sðiÞxz1R ¼ cð1Þ44

owðiÞ
1

on1
ðf1; g1; tÞ;

uðiÞ
1L ¼ uðiÞ

1 ð0; g1; tÞ; uðiÞ
1R ¼ uðiÞ

1 ðf1; g1; tÞ;

DðiÞ
x1L ¼ �eð1Þ11

ouðiÞ
1

on1
ð0; g1; tÞ; DðiÞ

x1R ¼ �eð1Þ11

ouðiÞ
1

on1
ðf1; g1; tÞ ði ¼ 1; 2; . . . ; nþ 1Þ;

ð18Þ

wðiÞ
2L ¼ wðiÞ

2 ð0; g2; tÞ; wðiÞ
2R ¼ wðiÞ

2 ðf2; g2; tÞ;

sðiÞxz2L ¼ cð2Þ44

owðiÞ
2

on2
ð0; g2; tÞ þ eð2Þ15

ouðiÞ
2

on2
ð0; g2; tÞ;

sðiÞxz2R ¼ cð2Þ44

owðiÞ
2

on2
ðf2; g2; tÞ þ eð2Þ15

ouðiÞ
2

on2
ðf2; g2; tÞ;

uðiÞ
2L ¼ uðiÞ

2 ð0; g2; tÞ; uðiÞ
2R ¼ uðiÞ

2 ðf2; g2; tÞ;

DðiÞ
x2L ¼ eð2Þ15

owðiÞ
2

on2
ð0; g2; tÞ � eð2Þ11

ouðiÞ
2

on2
ð0; g2; tÞ;

DðiÞ
x2R ¼ eð2Þ15

owðiÞ
2

on2
ðf2; g2; tÞ � eð2Þ11

ouðiÞ
2

on2
ðf2; g2; tÞ ði ¼ 1; 2; . . . ; nþ 1Þ;

ð19Þ
where the subscripts L and R denote the left and right sides of the two sub-cells in the ith unit cell.
Substitution of Eqs. (10), (11), (14) and (15) into Eqs. (18) and (19) leads to the following matrix

equation:
v
ðiÞ
jR ¼ T 0

jv
ðiÞ
jL ðj ¼ 1; 2; i ¼ 1; 2; . . . ; nþ 1Þ; ð20Þ
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where vðiÞjR ¼ wðiÞ
jR ; s

ðiÞ
xzjR;u

ðiÞ
jR ;D

ðiÞ
xjR

n oT

and v
ðiÞ
jL ¼ wðiÞ

jL ; s
ðiÞ
xzjL;u

ðiÞ
jL ;D

ðiÞ
xjL

n oT

are the state vectors at the right and left

sides of the two sub-cells and T 0
j is the 4 · 4 transfer matrices of the two sub-cells. The elements of T 0

j are
given in Appendix A.

The following condition is satisfied at the interface between the two sub-cells:
v
ðiÞ
1R ¼ v

ðiÞ
2L: ð21Þ
Thus the relationship between the right and left sides of the ith unit cell can be obtained from Eq. (20) as
v
ðiÞ
2R ¼ T iv

ðiÞ
1L ði ¼ 2; . . . ; nþ 1Þ; ð22Þ
where Ti is the transfer matrix of the ith unit cell and is given by
T i ¼ T 0
2T

0
1: ð23Þ
At the interface between the right side of the (i � 1)th unit cell and the left side of the ith unit cell, the fol-
lowing condition is satisfied:
v
ðiÞ
1L ¼ v

ði�1Þ
2R ði ¼ 2; . . . ; nþ 1Þ: ð24Þ
Substituting Eq. (24) into Eq. (22), one can obtain the following relation between the state vectors of the
(i � 1)th and the ith unit cells:
v
ðiÞ
2R ¼ T iv

ði�1Þ
2R ð25Þ
from which one can observe that Ti is the transfer matrix between two consecutive unit cells.
In order to analyze the influence of the piezoelectricity on the wave localization in the periodic 2-2 pie-

zoelectric composite structures, the case of a periodic layered elastic structure without the piezoelectricity is
also considered. By means of the same transfer matrix approach as mentioned above, the transfer matrices
of the two sub-cells in each unit cell of the purely elastic structure can be derived and their elements are

given in Appendix B. The vectors at the right and left sides of the two sub-cells are v
ðiÞ
jR ¼ wðiÞ

jR ; s
ðiÞ
xzjR

n oT

and v
ðiÞ
jL ¼ wðiÞ

jL ; s
ðiÞ
xzjL

n oT

, respectively. The transfer matrix between two consecutive unit cells is also written

by T i ¼ T 0
2T

0
1. Therefore, if the piezoelectric effect is ignored in the periodic structures, the dimension of the

transfer matrix is reduced to 2 · 2.
4. Wave localization

The Lyapunov exponent, which is a concept initially presented to characterize the temporal evolution of
a dynamical system (Wolf et al., 1985), is defined as the average exponential rate of convergence or diver-
gence between two neighboring phase orbits in the phase space and is considered as a measure of chaoticity.
Therefore, the existence of a positive Lyapunov exponent implies that the dynamical system is instable.
Localization factor, a similar concept applied to characterize the spatial evolution of a nearly periodic sys-
tem (Castanier and Pierre, 1995) characterizes the average exponential rate of growth or decay of the wave
amplitudes. So localization factors are related to the Lyapunov exponents of the corresponding discrete
dynamical systems, Eq. (25). And, it has been proved that the largest Lyapunov exponent is equivalent
to the localization factor for the mono-coupled system, while that the smallest positive Lyapunov exponent
is the localization factor for the multi-coupled system (Kissel, 1991).

In the publications on disordered periodic systems, the transfer matrix formulation has been used exten-
sively to determine the localization factors (Castanier and Pierre, 1995; Xie, 1998). For more detailed analy-
sis on the numerical instabilities that appear by using the transfer matrix method in the study of wave
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propagation in multi-layered piezoelectric composites, one can refer to the papers written by Otero et al.
(2004) and Rodrı́guez-Ramos et al. (2004).

As in Eq. (25), the state vector vðiÞ2R of the ith unit cell is related to that at the (i � 1)th unit cell through the
transfer matrix Ti. Iteratively applying Eq. (25) from the first unit cell to the last one, i.e. the (n + 1)th, unit
cell, one can derive the relational expression between the state vectors v

ð1Þ
2R and v

ðnþ1Þ
2R by a product of the

transfer matrices
v
ðnþ1Þ
2R ¼ Tnþ1Tn � � �T2v

ð1Þ
2R ¼ Cnv

ð1Þ
2R ; ð26Þ
where Cn = Tn+1Tn � � �T2 is called the total transfer matrix.
Following Wolf et al. (1985) for calculating Lyapunov exponents of continuous dynamical systems in

temporal region, we define a Lyapunov exponent kðvð1Þ2R Þ depending on the initial vector vð1Þ2R for the discrete
dynamical system, Eq. (25), in spatial region as follows:
kðvð1Þ2R Þ ¼ lim
n!1

1

n
ln

v
ðnþ1Þ
2R

��� ���
v
ð1Þ
2R

��� ��� : ð27Þ
Depending on the choice of the initial state vector vð1Þ2R , there will be d pairs of Lyapunov exponents having
the following property:
k1 P k2 P � � � P kd P kdþ1 P � � � P k2d ; ð28Þ

where 2d is the dimension of the transfer matrices Tn+1 � � �T2.

Eq. (27) implies that for large number n, the following two relations:
v
ðnþ1Þ
2R

��� ��� � v
ð1Þ
2R

��� ��� expðnkÞ and v
ð1Þ
2R

��� ��� � v
ðnþ1Þ
2R

��� ��� expð�nkÞ; ð29Þ
are equivalent. If the vectors v
ðnþ1Þ
2R and v

ð1Þ
2R are respectively considered as the initial and the last state vec-

tors, we can get from Eq. (27) that
v
ð1Þ
2R

��� ��� � v
ðnþ1Þ
2R

��� ��� expðnkÞ: ð30Þ
From Eqs. (28)–(30) one can observe that the 2d Lyapunov exponents always occur in pairs, i.e. if km is a
Lyapunov exponent then �km is also a Lyapunov exponent. For 2d · d transfer matrices, we arrange
k1,k2, . . . ,k2d in the descending order. Then the d pairs of Lyapunov exponents have the following property:
k1 P k2 P � � � P kd P 0 P ðkdþ1 ¼ �kdÞ P ðkdþ2 ¼ �kd�1Þ P � � � P ðk2d ¼ �k1Þ; ð31Þ

where strict inequalities hold for disordered systems. In this case, the first halves of the Lyapunov exponents
are positive, and the rest are negative.

For the mono-coupled disordered periodic system, there exist only one pair of waves and the dimension
of the transfer matrices is 2 · 2. So there are only two Lyapunov exponents, namely, the positive one k1 and
the negative one �k1. Therefore k1, the positive Lyapunov exponent, is the localization factor. For the
multi-coupled case, there exist more than one pair of waves and each pair of waves have different transmis-
sion and reflection characteristics, and the dimension of the transfer matrices is 2d · 2d (d > 1), higher than
2 · 2. So, there are d pairs of Lyapunov exponents in multi-coupled cases. And the smallest positive Lyapu-
nov exponent kd represents the wave with potentially the least amount of decay, and so it carries energy
along the periodic structure farther than any other waves and gives the dominant decay pattern. Hence,
the smallest positive Lyapunov exponent kd is the localization factor.

In this paper, the algorithm developed by Wolf et al. (1985) for calculating Lyapunov exponents for
continuous dynamical system is applied to the discrete dynamical system, Eq. (25). Assuming the dimension
of the transfer matrices is 2d · 2d. In order to calculate the mth Lyapunov exponent (1 6 m 6 2d), m
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orthogonal unit vectors of 2d-dimension, uð1Þ1 ; u
ð1Þ
2 ; . . . ; uð1Þm , are chosen as the initial state vectors. Then Eq.

(25) is used to compute the state vectors iteratively. At the ith iteration,
v
ðiþ1Þ
2R;k ¼ T iþ1u

ðiÞ
k ði ¼ 1; 2; . . . n; k ¼ 1; 2; . . . ;mÞ; ð32Þ
where the vectors u
ðiÞ
k are unit and orthogonal, while the vectors v

ðiþ1Þ
2R;k ðk ¼ 1; 2; . . . ;mÞ are usually not

orthogonal. The Gram–Schmidt orthonormalization procedure is now applied to produce m orthogonal
unit vectors
v̂
ðiþ1Þ
2R;1 ¼ v

ðiþ1Þ
2R;1 ; u

ðiþ1Þ
1 ¼

v̂
ðiþ1Þ
2R;1

kv̂ðiþ1Þ
2R;1 k

;

v̂
ðiþ1Þ
2R;2 ¼ v

ðiþ1Þ
2R;2 � ðvðiþ1Þ

2R;2 ; u
ðiþ1Þ
1 Þuðiþ1Þ

1 ; u
ðiþ1Þ
2 ¼

v̂
ðiþ1Þ
2R;2

kv̂ðiþ1Þ
2R;2 k

;

. . .

v̂
ðiþ1Þ
2R;m ¼ v

ðiþ1Þ
2R;m � ðvðiþ1Þ

2R;m ; u
ðiþ1Þ
m�1 Þu

ðiþ1Þ
m�1 � . . .� ðvðiþ1Þ

2R;m ; u
ðiþ1Þ
1 Þuðiþ1Þ

1 ; uðiþ1Þ
m ¼

v̂
ðiþ1Þ
2R;m

kv̂ðiþ1Þ
2R;m k

;

ð33Þ
where (Æ, Æ) denotes the dot-product.
After the m orthonormal unit vectors, uðiÞ1 ; u

ðiÞ
2 ; . . . ; uðiÞm , are operated by transfer matrix Ti+1 and ortho-

normalized by Gram–Schmidt procedure, the volume of an m-dimensional hypersphere is given by
kv̂ðiþ1Þ

2R;1 k � kv̂
ðiþ1Þ
2R;2 k � � � kv̂

ðiþ1Þ
2R;m k ¼

Qm
k¼1kv̂

ðiþ1Þ
2R;k k. Hence, after the initial vectors, uð1Þ1 ; u

ð1Þ
2 ; . . . ; uð1Þm , are operated

by a product of transfer matrices, Cn = Tn+1Tn � � �T2, the volume of an m-dimensional hypersphere
becomes
V ¼
Yn
i¼1

Ym
k¼1

kv̂ðiþ1Þ
2R;k k

 !
: ð34Þ
For an n-dimensional dynamical system in the phase space, an m-dimensional volume is defined by the m
principal axes evolves on the average as
V ¼ exp½ðk1 þ k2 þ � � � þ kmÞn�; ð35Þ

where k1,k2, . . . ,km are the m Lyapunov exponents. Hence, by combining Eq. (34) with (35), one can get the
expression for determining the mth Lyapunov exponent as follows:
km ¼ lim
n!1

1

n

Xn
i¼1

ln kv̂ðiþ1Þ
2R;m k; ð36Þ
where n denotes the number of the iterations or the number of unit cells in the periodic structures.
By means of Eq. (36), each of the m pairs of Lyapunov exponents can be calculated. The mth Lyapunov

exponent km is the localization factor. For the periodic layered purely elastic structure, the dimension of the
transfer matrices is 2 · 2 and then k1 is the localization factor. While for the periodic layered piezoelectric
composite structure, the dimension of the transfer matrices is 4 · 4. So the second Lyapunov exponent, k2,
is the localization factor.
5. Numerical examples and discussion

In this section, numerical computation for the randomly disordered periodic layered piezoelectric com-
posite structure as shown in Fig. 1 is performed to examine the behavior of the propagation and localiza-



Table 1
Material constants of the polymers and piezoelectric ceramics

Maretials Elastic constant c44
(1010 N/m2)

Mass density q
(103 kg/m3)

Piezoelectric constant
e15 (C/m

2)
Dielectric constant e11
(10�10 F/m)

Polythene 0.128 1.18 0.2036
PZT-5H 2.30 7.50 17.0 277.0
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tion of elastic waves with different frequencies. The non-dimensional thickness of the polymers, f1, the
piezoelectric and elastic constants of the piezoelectric ceramics, eð2Þ15 and cð2Þ44 , are respectively considered dis-
ordered in calculations. As examples, we take the material constants of the polymers and piezoelectric
ceramics from Qian et al. (2004) and list them in Table 1.

5.1. Disordered in the non-dimensional thickness of the polymers

The non-dimensional thickness of the polymers, f1, is assumed to be a uniformly distributed random var-
iable with the mean value, �f1, and the coefficient of variation, d. So f1 is a random number distributed in the
interval ½�f1ð1�

ffiffiffi
3

p
dÞ;�f1ð1þ

ffiffiffi
3

p
dÞ�. Introduce a standard uniformly distributed random variable, r 2 (0,1),

then f1 can be expressed as
f1 ¼ �f1½1þ
ffiffiffi
3

p
dð2r � 1Þ�: ð37Þ
The localization factors for the disordered periodic purely elastic and piezoelectric composite structures are
respectively calculated by using Eq. (36). For the ith iteration, a random number r is generated to yield the
dimensionless thickness of the polymers, and the elements of the transfer matrices are calculated. Three val-
ues of the coefficient of variation, i.e. d = 0, 0.05 and 0.1, are considered. The case of d = 0 corresponds to
the perfectly periodic structures.

The case for eð2Þ15 ¼ 0 with other material constants listed in Table 1 is considered first. It is seen from Eq.
(2) that the displacement and electrical potential functions in the piezoelectric ceramics are uncoupled in
this case. The results are illustrated in Fig. 2 for wave incidence angle h0 = 0� (Fig. 2a) and 45� (Fig.
2b). For the purpose of comparison, the smallest positive Lyapunov exponent k2 for the periodic layered
2-2 piezoelectric structures with eð2Þ15 ¼ 0 and the positive Lyapunov exponent k1 for the periodic layered
purely elastic structures are all plotted. The solid, dot-dashed and dashed lines denote the localization fac-
tor, k2, of the piezoelectric structures for d = 0, 0.05 and 0.1, respectively, and the scattered dots denote the
localization factor, k1, of the purely elastic structures for the corresponding values of d. It is clearly seen
that the localization factor k1 for the purely elastic structures agrees extremely well with the smallest posi-
tive Lyapunov exponent k2 for the piezoelectric structures with eð2Þ15 ¼ 0. This fact implies that the results for
the purely elastic structures (2 · 2 transfer matrices) can be recovered from those for the piezoelectric struc-
tures (4 · 4 transfer matrices) by setting eð2Þ15 ¼ 0.

It is also seen from Fig. 2 that ordered periodic structures (d = 0) have the properties of frequency pass-
bands and stopbands while that a localization phenomenon occurs in disordered periodic structures. For
example, as shown by the solid lines in Fig. 2b, the interval a 2 (2.2,2.6) where the localization factors van-
ish is known as the passband; and the interval a 2 (2.6,4.3) is called the stopband as the localization factors
are bigger than zero at this frequency region. Moreover, the localization factors in the disordered periodic
structures are not zero but positive in the passbands of the corresponding ordered periodic ones, which
means that elastic waves cannot be freely transmitted but localized. With the increase of the coefficient
of variation d, the amplitudes of the localization factors in the passbands are increased and thus the locali-
zation is strengthened.



Fig. 2. Localization factors vs. non-dimensionalized wave number a for eð2Þ15 ¼ 0 with comparison to the results of periodic purely
elastic structures.
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Fig. 3 shows effects of the incident angles on the localization factors of the disordered piezoelectric struc-
tures. Comparing Fig. 3 with Fig. 2, we can find that the localization behavior of the disordered periodic
piezoelectric structures changes pronouncedly for different incident angles. For instance, when h0 < 30�
(Fig. 3a–c), with the increase of the incident angle the peak values of the localization factors are decreased
and the passbands for ordered periodic structures are gradually broadened. However, when h0 increases to
70� (Fig. 3c), an interesting phenomenon appears: the localization factors are all positive even for the
ordered periodic structures except for a single frequency point in the considered frequency regions. This
is understood by considering that total reflection of elastic waves occurs in this case because sin h0 ¼
0:940 > c=c2 ¼ 0:543 for h0 = 70�. Therefore no passband appears in this case even for ordered periodic
structures.

In order to analyze the effects of the piezoelectric effects on the dynamical behavior of the wave propa-
gation and localization, the localization factors for different values of eð2Þ15 (0, 5, 10 and 20 C/m2) with other
material constants as listed in Table 1 are computed and illustrated in Fig. 4 as functions of a for both
ordered (Fig. 4a) and disordered (Fig. 4b) periodic structures. We can see from Fig. 4a that with the
increase of eð2Þ15 , the peak values of localization factors also increase and passbands for ordered periodic



Fig. 3. Localization factors vs. non-dimensionalized wave number a with the consideration of the effects of incident angle h0.

Fig. 4. Localization factors vs. non-dimensionalized wave number a with the consideration of the effects of eð2Þ15 for d = 0 (a) and
d = 0.05 (b).
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structures become narrower. This means that the piezoelectricity increases the widths of the stopbands, and
thus fewer waves can propagate through the structures.
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It is observed from Fig. 4b that for disordered periodic structures the localization factors are positive
in almost all the considered frequency regions. With the increase of eð2Þ15 , the peak values of localiza-
tion factors also increase and the localization factors of the piezoelectric structures are larger than
those of the purely elastic ones (solid lines). So we could conclude that the wave localization in the dis-
ordered periodic piezoelectric structures is stronger than that in the disordered periodic purely elastic
ones. And the larger the piezoelectric constant of the piezoelectric ceramics is, the stronger the wave
localization is.

Fig. 5 shows the variations of localization factors vs. non-dimensional wave-number a with the consid-
eration of the effects of c/c1 (or equivalently c/c2 since c/c2 can be determined from Eq. (8) and Table 1 for a
given value of c/c1) for f2/f1 = 1.0, h0 = 30� and d = 0, 0.05 and 0.1. We can see that for the case of c/
c1 = 0.5 (or c/c2 = 0.247, the case of c/c1 5 1 implies that the SH-waves are incident to the piezoelectric
composite from other media conglutinated to it) the localization factors for ordered and disordered perio-
dic structures are positive in all frequency regions and gradually increase with the increase of a. This phe-
nomenon is due to the fact that sin h0 ¼ 0:5 > c=c2 ¼ 0:247 and thus the total reflection of elastic waves
appears. Therefore all frequency regions are stopbands and no elastic waves can propagate through the
periodic or disordered periodic piezoelectric structures. With the increase of c/c1 or c/c2, it is observed that
the passbands appear for ordered periodic structures and wave localization phenomenon occurs for dis-
ordered structures. It can also be seen from Figs. 5b–d that with the increase of c/c1 or c/c2, the pass-
Fig. 5. Localization factors vs. non-dimensionalized wave number a with the consideration of the effects of c/c1 and c/c2.



Fig. 6. Localization factors vs. non-dimensionalized wave number a with the consideration of the effects of f2/f1 for d = 0 (a)
and d = 0.1 (b).
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bands become narrower, the stopbands become broader, and the number of passband and stopband is
increased.

The variations of the localization factors vs. non-dimensional wave-number a with the consideration of
the effects of the thickness of the piezoelectric ceramics for c/c1 = 1.5 (or c/c2 = 0.740), h0 = 45� and d = 0
and 0.1 are displayed in Fig. 6. It can be observed from Fig. 6a that the passbands near a = 0 and 3.0 be-
come narrower and that the widths of the passbands near a = 5.0 and 7.0 have little changes for different
values of f2/f1. However the locations of the passbands have more changes with the increase of f2/f1. We
can see from Fig. 6b that for disordered periodic structures the localization factors increase with the
increase of f2/f1 in the interval of a 2 (1.0,5.8) and that the localization factor for the case of f2/f1 = 1.5
decrease rapidly with the increase of a when a > 5.8.

5.2. Disorder in the piezoelectric and elastic constants of the piezoelectric ceramics

In this section, the piezoelectric constant eð2Þ15 and the elastic constant cð2Þ44 of the piezoelectric ceramics are
respectively assumed disordered to discuss the localization of SH-waves in the disordered periodic 2-2
piezoelectric composite structures. The piezoelectric and elastic constants of the piezoelectric ceramics
are considered to be uniformly distributed random variables which may be expressed as
Z ¼ Z½1þ
ffiffiffi
3

p
dð2r � 1Þ�; ð38Þ
where Z stands for eð2Þ15 or cð2Þ44 ; Z is the mean value of eð2Þ15 or cð2Þ44 ; d is the coefficient of variance of eð2Þ15 or cð2Þ44 ;
and r is a standard uniformly distributed random variable.

Figs. 7 and 8 shows the variations of localization factors vs. dimensionless wave-number a with the dis-
ordered piezoelectric and elastic constants of the piezoelectric ceramics, respectively. In Fig. 7 the mean
value of the piezoelectric constant is taken as �eð2Þ15 ¼ 17:0 C/m2, the incident angle h0 are 30� and 45�, the
coefficient of variation d = 0, 0.002, 0.005 and 0.01 and the other parameters are shown in the figure. From
Fig. 7a we can clearly observe that with the increase of d the localization factors in the passband of
a 2 (5.5,6.0) are positive and increased. In Fig. 7b we can see that with the increase of d the passbands
in the lower frequency regions become narrower and the localization phenomenon appear in the higher fre-
quency regions. In Fig. 8 the mean value of the elastic constant is taken as �cð2Þ44 ¼ 2:30� 1010 N/m2. Similar
phenomenon as in Fig. 7 is observed. The most important feature that shown in Figs. 7 and 8 is that for



Fig. 7. Localization factors vs. non-dimensionalized wave number a for the case of the piezoelectric constant of the piezoelectric
ceramics assumed to be disordered.
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very small disorder (d = 0.002 and 0.005) the localization phenomenon is more pronounced. So even slight
disorder of the piezoelectric or elastic constants of the piezoelectric ceramics has remarkable influences on
the dynamical behaviors of disordered periodic piezoelectric composite structures and cannot be ignored.
The reason why slight disorder of the piezoelectric or elastic constant of the piezoelectric ceramics can lead
to more prominent localization phenomenon is that slight disorder can result in larger variation of the bulk
shear wave velocity, and therefore remarkable changes of the wave behaviors, in the piezoelectric ceramics,
see Eq. (8).



Fig. 8. Localization factors vs. non-dimensionalized wave number a for the case of the elastic constant of the piezoelectric ceramics
assumed to be disordered.
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6. Conclusions

In the present work, the two-dimensional wave propagation and localization in disordered periodic lay-
ered 2-2 piezoelectric composite structures are studied with the consideration of the mechanical and elec-
trical coupling. The transfer matrix between two consecutive sub-layers is obtained based on the
continuity conditions at the interfaces and the expression of the localization factor in disordered periodic
structures is presented. For the purpose of comparison, the case of the piezoelectric constant of the



6472 F.-M. Li, Y.-S. Wang / International Journal of Solids and Structures 42 (2005) 6457–6474
piezoelectric ceramics, eð2Þ15 , being equal to zero is also considered. Numerical simulations are performed to
calculate the localization factors for disorders in both the non-dimensional thickness of the polymers and
the piezoelectric or elastic constants of the piezoelectric ceramics. From the results, we can draw the follow-
ing conclusions:

(1) For a periodic layered piezoelectric composite structure, the dimension of the transfer matrix is 4 · 4,
and the smallest positive Lyapunov exponent k2 is the localization factor. But if the piezoelectric con-
stant of the piezoelectric ceramics is equal to zero, the dimension of the transfer matrix is reduced to
2 · 2, and the positive Lyapunov exponent k1 is the localization factor. This special case is identical to
the case of periodic purely elastic structures.

(2) Tuned periodic structures have the properties of frequency passbands and stopbands and a localiza-
tion phenomenon can occur in mistuned periodic ones. The larger the coefficient of variation is, the
stronger the localization is.

(3) Due to the effect of piezoelectricity, the wave localization in disordered periodic layered piezoelectric
structures is stronger than that in disordered periodic purely elastic ones. With the increase of the
piezoelectric constant, the wave localization becomes more pronounced.

(4) Slight disorder of the piezoelectric or elastic constant of the piezoelectric ceramics can lead to more
prominent localization phenomenon.

(5) The behavior of the wave propagation and localization may be controlled by properly adjusting the
value of the piezoelectric constants.
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Appendix A

The elements of the transfer matrices of two sub-cells in the ith unit cell of disordered periodic layered
piezoelectric composite structures are written as
T 0
1ð1; 1Þ ¼

expð�iaq1f1Þ þ expðiaq1f1Þ
2

; T 0
1ð1; 2Þ ¼

expðiaq1f1Þ � expð�iaq1f1Þ
2iaq1c

ð1Þ
44

;

T 0
1ð1; 3Þ ¼ 0; T 0

1ð1; 4Þ ¼ 0; T 0
1ð2; 1Þ ¼

iaq1c
ð1Þ
44 ½expðiaq1f1Þ � expð�iaq1f1Þ�

2
;

T 0
1ð2; 2Þ ¼

expð�iaq1f1Þ þ expðiaq1f1Þ
2

; T 0
1ð2; 3Þ ¼ 0; T 0

1ð2; 4Þ ¼ 0;

T 0
1ð3; 1Þ ¼ 0; T 0

1ð3; 2Þ ¼ 0; T 0
1ð3; 3Þ ¼

expð�af1 sin h0Þ þ expðaf1 sin h0Þ
2

; ðA:1Þ

T 0
1ð3; 4Þ ¼

expð�af1 sin h0Þ � expðaf1 sin h0Þ
2aeð1Þ11 sin h0

; T 0
1ð4; 1Þ ¼ 0;
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T 0
1ð4; 2Þ ¼ 0; T 0

1ð4; 3Þ ¼
aeð1Þ11 sin h0½expð�af1 sin h0Þ � expðaf1 sin h0Þ�

2
;

T 0
1ð4; 4Þ ¼

expð�af1 sin h0Þ þ expðaf1 sin h0Þ
2

;

T 0
2ð1; 1Þ ¼

expð�iaq2f2Þ þ expðiaq2f2Þ
2

; T 0
2ð1; 2Þ ¼

expðiaq2f2Þ � expð�iaq2f2Þ
2iaq2½pe

ð2Þ
15 þ cð2Þ44 �

;

T 0
2ð1; 3Þ ¼ 0; T 0

2ð1; 4Þ ¼
p½expðiaq2f2Þ � expð�iaq2f2Þ�

2iaq2½pe
ð2Þ
15 þ cð2Þ44 �

;

T 0
2ð2; 1Þ ¼

iaq2½pe
ð2Þ
15 þ cð2Þ44 �½expðiaq2f2Þ � expð�iaq2f2Þ�

2
þ paeð2Þ15 sin h0½expð�af2 sin h0Þ � expðaf2 sin h0Þ�

2
;

T 0
2ð2; 2Þ ¼

expð�iaq2f2Þ þ expðiaq2f2Þ
2

;

T 0
2ð2; 3Þ ¼

aeð2Þ15 sin h0½expðaf2 sin h0Þ � expð�af2 sin h0Þ�
2

;

T 0
2ð2; 4Þ ¼

p½expðiaq2f2Þ þ expð�iaq2f2Þ � expðaf2 sin h0Þ � expð�af2 sin h0Þ�
2

;

T 0
2ð3; 1Þ ¼

p½expðiaq2f2Þ þ expð�iaq2f2Þ � expðaf2 sin h0Þ � expð�af2 sin h0Þ�
2

;

T 0
2ð3; 2Þ ¼

p½expðiaq2f2Þ � expð�iaq2f2Þ�
2iaq2½pe

ð2Þ
15 þ cð2Þ44 �

; T 0
2ð3; 3Þ ¼

expð�af2 sin h0Þ þ expðaf2 sin h0Þ
2

;

T 0
2ð3; 4Þ ¼

p2½expðiaq2f2Þ � expð�iaq2f2Þ�
2iaq2½pe

ð2Þ
15 þ cð2Þ44 �

þ expð�af2 sin h0Þ � expðaf2 sin h0Þ
2aeð2Þ11 sin h0

;

T 0
2ð4; 1Þ ¼

aeð2Þ15 sin h0½expðaf2 sin h0Þ � expð�af2 sin h0Þ�
2

;

T 0
2ð4; 2Þ ¼ 0; T 0

2ð4; 3Þ ¼
aeð2Þ11 sin h0½expð�af2 sin h0Þ � expðaf2 sin h0Þ�

2
;

T 0
2ð4; 4Þ ¼

expð�af2 sin h0Þ þ expðaf2 sin h0Þ
2

:

ðA:2Þ
Appendix B

The elements of the transfer matrices of two sub-cells in the ith unit cell of disordered periodic purely
elastic structures are written as
T 0
1ð1; 1Þ ¼

expð�iaq1f1Þ þ expðiaq1f1Þ
2

; T 0
1ð1; 2Þ ¼

expðiaq1f1Þ � expð�iaq1f1Þ
2iaq1c

ð1Þ
44

;

T 0
1ð2; 1Þ ¼

iaq1c
ð1Þ
44 ½expðiaq1f1Þ � expð�iaq1f1Þ�

2
;

T 0
1ð2; 2Þ ¼

expð�iaq1f1Þ þ expðiaq1f1Þ
2

;

ðB:1Þ
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T 0
2ð1; 1Þ ¼

expð�iaq2f2Þ þ expðiaq2f2Þ
2

; T 0
2ð1; 2Þ ¼

expðiaq2f2Þ � expð�iaq2f2Þ
2iaq2c

ð2Þ
44

;

T 0
2ð2; 1Þ ¼

iaq2c
ð2Þ
44 ½expðiaq2f2Þ � expð�iaq2f2Þ�

2
;

T 0
2ð2; 2Þ ¼

expð�iaq2f2Þ þ expðiaq2f2Þ
2

:

ðB:2Þ
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